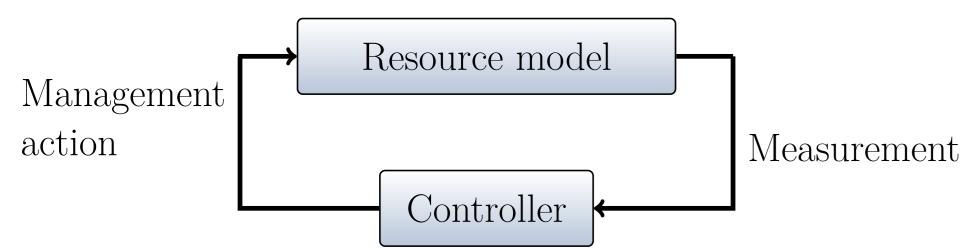


¹ Department of Mathematical Sciences, University of Bath; ² School of Engineering & the Built Environment, Edinburgh Napier University; ³ Environment, Edinburgh Napier University, ⁴ Departamento de Matemática Aplicada, Universidad Nacional de Educación a Distancia (UNED) An extended version of this research has been accepted for publication, see [1]. For further information email: psjs22@bath.ac.uk


Key words:

adaptive control

How to control a quantity which is poorly understood?

Problem Statement

- Design a novel switching function, inspired by adaptive control, that identifies a suitable strategy which gives desirable dynamic behaviour, assuming that such a strategy exists.
- Here, a desirable strategy corresponds to a strategy resulting in persistence of the population.
- Assumptions: there are at least two strategies to choose between and that at least one of these strategies corresponds to the population persisting.
- *Desired result*: measurements indicating a small population cause our model to switch strategy, whilst measurements indicating a large population cause no further switches and so the solution is reached.
- Mathematically, achieved using a feedback control approach and population measurements taken at discrete time intervals to inform the choice of strategy.

Block diagram of feedback interconnection

Objectives

- The tool will identify a strategy corresponding to persistence from a choice of discrete and distinct control strategies available
- Applicable for use on species where the parameters of the population model are uncertain.

Novelty

To avoid extinction, we seek to destabilise the zeroequilibrium. However, adaptive control typically seeks to stabilise the zero equilibrium of a control system. Hence, this work is novel in the application to resource management and in the theory developed.

A switching feedback control approach for the persistence of managed resources

Phoebe Smith¹, Chris Guiver², Stuart Townley³ and Daniel Franco⁴

• conservation

• feedback control

Model

Each management strategy corresponds to a positive difference equation $x(t+1) = F(r, x(t)), \quad x(0)$

Here, the population of interest, x(t), varies temporally with discrete time-step t and may be scalar- or vector-valued and the integer r denotes which of the q management strategies is applied at time t. For fixed r, the function $F(r, \cdot)$ describes the dynamics of x, with initial condition x_0 , and may be linear or nonlinear. We use a feedback control approach and population measurements, y(t), to design a switching system that identifies desirable strategies. The adaptive switching feedback control scheme is given by the system of positive difference equations

$$\begin{aligned} x(t+1) &= F\left(\mathcal{K}(s(t)), x(t)\right), \quad x(0) = x_0, \\ s(t+1) &= s(t) + \begin{cases} 0, & M \le \|y(t)\|, \ \|y(t)\| = 0 \\ \frac{1}{\|y(t)\|} & \|y(t)\| < M, \end{cases} \qquad s(0) = s_0, \end{cases}$$

$$t \in \mathbb{Z}_+.$$

$$(2)$$

The control strategy applied at time t is $\mathcal{K}(s(t)) \in \{1, \dots, q\}$ and is determined by s and a fixed sequence τ via the function $\mathcal{K}: \mathbb{R}_+ \to \{1, \cdots, q\}$. The switching sequence, s is updated using the measured variable y and the design parameters M > 0and s_0 .

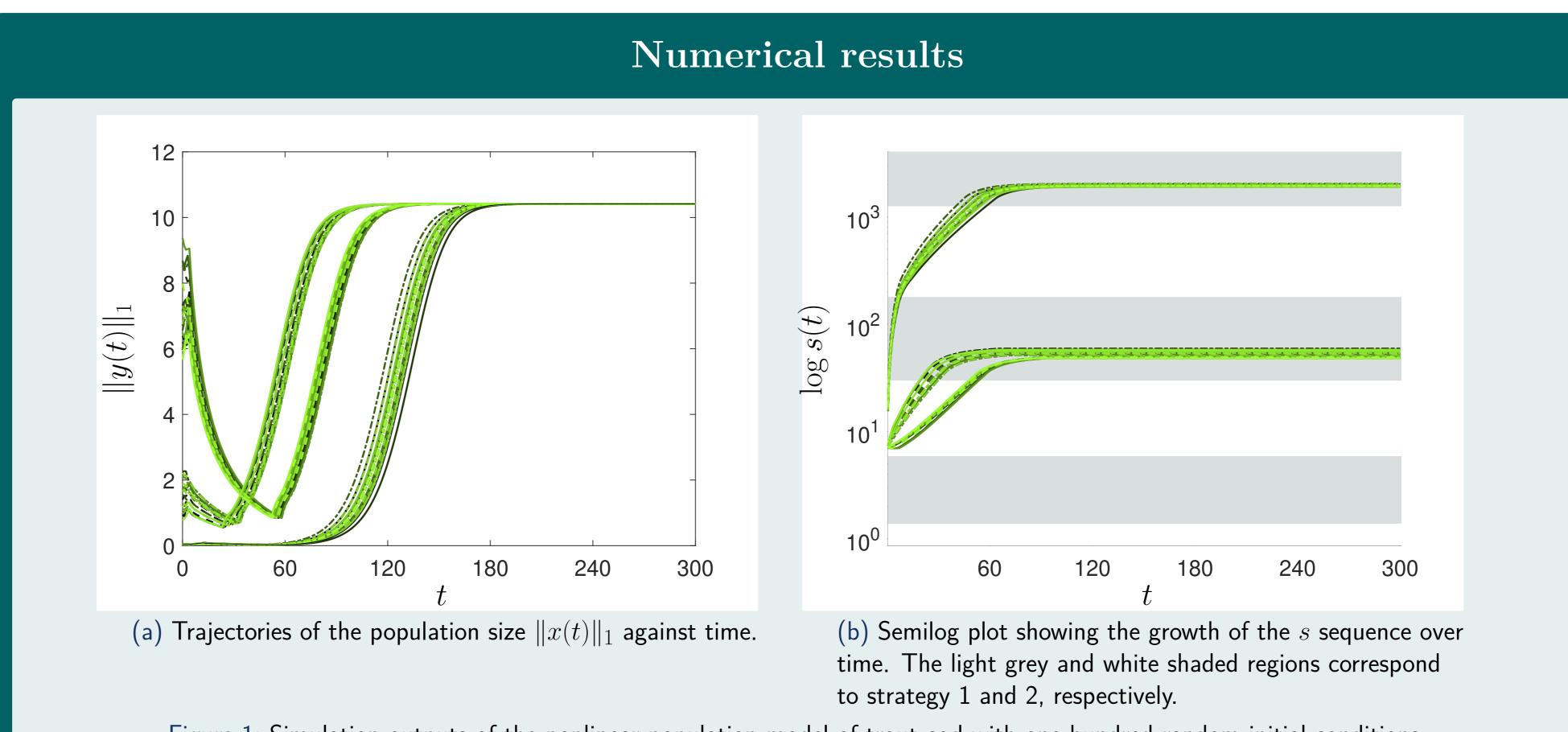


Figure 1: Simulation outputs of the nonlinear population model of trout cod with one hundred random initial conditions.

- Density-dependent stage-structured population projection matrix model for female trout cod (Maccullochella macquariensis) [2], categorised as vulnerable by the IUCN Red List of Threatened Species [3].
- The model has annual time-steps and units corresponding to 10^3 fish.
- *Model assumptions*: two management strategies available and only adult fish can be observed.
- Strategy 1 and 2 result in persistence and extinction of the population, respectively.
- Simulated for one hundred random initial conditions.
- For all initial conditions, the observed population size, $\|y\|_1$, settles to the equilibrium, that is persists (Figure 1a), whilst s becomes bounded in the desirable strategy (Figure 1b).

• mathematical ecology

positive system

(1)

$$(0) = x_0.$$

• *s* is bounded; • $x \text{ persists as } t \to \infty.$

- optimal solution.
- resources. Accepted, 2021
- Available here.
- discrete patch dynamics.

• resource management

Theorem

Consider (2) where F is as in (1) with $q \ge 2$. Under suitable assumptions, the following statements hold

• $\mathcal{K}(s(t)) \to r \text{ as } t \to \infty$ where r is a desirable strategy;

Summary

• A novel and robust feedback control solution has been developed in the context of conserving populations where there are a discrete number of management options.

• The switching system uses per time-step population measurements to identify a management option that corresponds to the persistence of the population.

• The assumptions placed on the $F(r, \cdot)$ are structural and not restrictive in this, ecological, setting.

• Envisage the scheme being used in situations where the $F(r, \cdot)$ are unknown, or highly uncertain.

Future Work

• Relax assumption that there is a desirable strategy by including assumptions regarding the transient nature of the models, so that extinction strategies can be coupled to give way to an persisting population overall, as seen in [4]. • Explore the middle ground between finding a robust and

References

[1] D. Franco, C. Guiver, P. Smith, and S. Townley. A switching feedback control approach for the persistence of managed [2] C. R. Todd, S. J. Nicol, and J. D. Koehn. Density-dependence uncertainty in population models for the

conservation management of trout cod, maccullochella macquariensis. Ecological Modelling, 171(4):359–380, 2004.

[3] J. Koehn, M. Lintermans, J. Lieschke, and D. Gilligan. Maccullochella macquariensis. The IUCN Red List of Threatened Species, 2019.

[4] C. Guiver, D. Packman, and S. Townley. A necessary condition for dispersal driven growth of populations with Journal of Theoretical Biology, 424:11–25, 2017.